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ABSTRACT

Limited public information is available about the actual likelihood of success that attackers will have when
attempting to exploit a particular vulnerability. In the absence of success likelihood metrics, the available
metrics about the presence of vulnerabilities are used to meet the demand for success-likelihood metrics, thus
leading to an inaccurate threat picture. The exploitability of specific vulnerabilities depends upon the network
environment and the attacker under consideration, thus there is no reason to expect that metric information that
does not include these attributes in its scope will lead to a correct mitigation prioritization, even if those metrics
are applicable within their scope. However, insufficient threat information, or an incomplete understanding of
the scope of particular metrics, leaves network defenders to use vulnerability metrics in place of exploitability
metrics. This incorrect usage of vulnerability metrics can cause network defenders to prioritize mitigations
inappropriately.

In this paper we model the largest class of attackers – a basic attacker who uses the widely available
Metasploit Framework (MSF) penetration testing tool with its dictionary of exploits. We show that there is
only a moderate relationship between the popular Common Vulnerability Scoring System (CVSS) exploitability
metric, which provides an indication of the exploitability of a vulnerability, and the success of an attacker in
our attacker model. In environments where resources are constrained so that vulnerability mitigation must be
prioritized, this work demonstrates that an efficient use of resources will not be obtained by relying on public
vulnerability metrics alone. It is important to determine the environmental exploitability of vulnerabilities by
testing the attacker models of concern against the organization’s installed baseline, and prioritizing mitigations
according to success likelihood data. We present an application of our approach and provide statistics from
testing across a wide range of Microsoft operating systems.

1.0 INTRODUCTION

Computer software vulnerability advisories may contain information about the privilege that attackers would
gain if they exploited a vulnerability, and some barriers to exploiting a vulnerability, but this information does
not say how reliably attackers can execute an exploit against a vulnerability. CVSS contains two “exploitability”
subscores. One is based on the Base metrics and the factors represented by it are the access vector (i.e., whether
local access is required, or if it is network exploitable), the access complexity, and whether authentication is
required. The second is the temporal metric and the factors represented by it are the current state of exploit
techniques and code availability. It is the temporal metric that would give network administrators a good
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indication of whether attackers can in fact successfully exploit the vulnerability. However, the temporal metric
is not populated, only the base metric is. The temporal exploitability metric would be an important input
to allow administrators to prioritize their limited resources in mitigating one vulnerability over another and
without it they are left to make ease-of-exploitation estimates. One might simply assume that the presence of
vulnerable software in their network is sufficient to enable an attackers’ successful exploit, and in that case
mitigation activities are prioritized based on insufficient metrics lacking details on the likelihood of successful
exploitation.

If mitigation of vulnerabilities could be done quickly, inexpensively, and with no impact on the enterprise,
then one could simply mitigate all of them. The reality is that there are many more vulnerabilities on enterprise-
sized networks than can be addressed with available resources, and within acceptable levels of impact. Without
quality vulnerability data of sufficient detail, resources will be spent inefficiently and the network will be less
secure than it would be if the resources were spent optimally by mitigating the vulnerabilities that have the
greatest likelihood of successful exploitation.

The focus of this work is to test the hypothesis: software vulnerabilities are easily and reliably exploitable
using off-the-shelf exploits. We show the hypothesis is false and that vulnerabilities are often not easily and
reliably exploitable. We develop a repeatable approach to determine the likelihood of successful exploit of
vulnerabilities in a given attack model. Attack graph approaches can use our success likelihood metric, and
the dependence that an attacker has on the vulnerabilities, as an input to calculate mitigation priorities to more
efficiently defend a network. We compare our prioritization with that obtained if one were to simply use pub-
lished vulnerability scores. We present an application of our approach using the attack model of a person using
the Metasploit Framework, and give statistics from data gathered across many software platforms. We show
that the success likelihood varies greatly across exploits. In addition to improving mitigation prioritization, the
research is also directly applicable to threat and risk assessments.

Section 2.0 describes the test infrastructure using virtual machines (VMs) that are comprised of an attack
station, running the attack tool MSF, and separate target machines running the Operating Systems (OSs) under
investigation. The setup enables the execution of attacks against one targeted OS at a time, allowing us to collect
relevant statistics for each OS as described in Section 3.0. This is followed by related work in Section 4.0.
Discussion of our results and conclusions are presented in Section 5.0.

2.0 DESCRIPTION OF TEST INFRASTRUCTURE

In this section, we describe the logical and physical setup of the test environment. We present the network
architecture, routing, and system configurations. The section is concluded with a presentation of our attacker
model and the test tools used.

2.1 Testing environment and network architecture

Our testing was conducted in a lab environment using virtualization technology to emulate a penetration testing
scenario. VMs, were used to simplify the testing infrastructure. Attacker and target systems, as well as the
connecting switch, were all created within the VM environment. The VM network was isolated to ensure
that attacks to targets would not spread to unintended systems or networks. Virtualization also permitted the
automation of some components of the testing, such as automating the power cycling, and ease of configuration,
deployment and control.

In this testing environment, all devices were placed into a flat network with target systems placed into
the same network segment as the attacker systems. This general architecture is illustrated in Figure 1. It
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consists of n hosts directly connected to the N attacker systems through a virtual network switch. During
our testing, one of the attacker systems was used to launch a direct attack on one of the targeted hosts. This
configuration represents a single-step attack, which conforms to the type of attacker represented by our tests
(see Section 2.2.1). In addition, antivirus products and host firewalls were disabled in order to ensure that
our experimental results were independent of any security configurations on the target systems. While not
representative of a production deployment of systems, this setup helped ensure that the success and failure rates
of the exploits used were not externally influenced by security controls.

Figure 1: Generalised test network architecture.

2.2 Attacker model and testing tools used

During penetration testing using attack tools, the general steps taken to perform attacks are as follows [1].
First, the services available on a target system are determined. Secondly, vulnerabilities on that system are
established. Next, an exploit that takes advantage of this vulnerability is delivered to the target using a selected
communication mechanism. The exploit is then executed, and access to the exploited system is achieved. The
attacker model and the attack tools used to execute these steps in our tests are presented in this section.

2.2.1 Attacker model

Our attacker model represents a determined attacker who has moderate practical knowledge on gaining access
to target systems, but has limited textbook computer science knowledge of computer, software, and network
architectures, and their implications for vulnerabilities. In our model, the attacker can take up to a few weeks
to plan and execute attacks but is unwilling to accept any negative consequences of his actions, such as im-
prisonment. However, the attacker’s knowledge profile means that he is unable to forecast the artefacts that
could be used to attribute attacks to him, and does not attempt to improve upon the attack hiding mechanisms
provided by the tools he uses. Once the attacker gains access to the target systems, he is able to perform simple
operations, such as exfiltration of files and screenshots.

This attacker model fits the threat level 8 of the Sandia generic threat matrix [2] in a number of ways. Our
attacker uses exploits in the attack tool library to gain a shell and uses limited attack knowledge to pursue his
goal, which in our case is exfiltrating easily acquired data in the form of a screenshot. Matching the time it took
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us to plan and execute the attacks, our attacker takes up to a few weeks to do the same tasks. In addition, during
the execution of attacks, our attacker uses and modifies existing attack scripts that targeted vulnerable systems.
In those scripts, the attacker exploited vulnerable systems by using the basic payloads provided by the attack
tools. These attacker characteristics, which describe the common hacker, are also consistent with level 1 of the
MITRE Cyber Preparedness model [3].

This model was chosen since the majority of the attacks that organizations face are perpetrated by attackers
that fall into this model [4, p. 226]; hackers accounted for the highest data breaches in 2013 [5, p. 39]. Multi-
stage attacks, where an attacker hops from computer to computer, do not require knowledge or tools beyond
those used within our attacker model. Attackers who are more sophisticated than this are not included in our
model, such as attackers who write custom exploits, who extend the tools to improve exploitation, and who use
out-of-band methods including social engineering. However, the basic techniques in this work can be extended
to model attackers with more sophisticated tools and knowledge by simply using those tools and that knowledge
in place of the attacker model that we have used in this work. Our main point is that the organization should
base its mitigation decisions on metrics that accurately represent the attacker model they are defending against.

2.2.2 Metasploit Framework

Our penetration testing tool, Metasploit Framework (MSF) [6], is a multi-purpose attack suite that provides,
among other functionalities, the ability to exploit vulnerable remote systems. Penetration testing is accom-
plished by using exploits that come with the MSF suite or through custom code running within the framework.
For this work, and to match our attacker model, only the exploits that come with the MSF were used and no
customization was performed beyond automating the tools to simplify testing.

Besides exploits, the MSF environment contains many payload modules, that permit users to deploy code
onto remote targeted systems. The payloads are delivered to the target using one of the various delivery mech-
anisms [6, 7]. To provide connectivity to a remote system, MSF also supports many different methods of
transmitting data between the target and attacker [6, 7]. This could include the attacker initiating the connection
to the target system, or the target system connecting out to the attacker system. For this work, we utilized the
two most popular connectivity methods: Reverse TCP and Bind TCP.

Our testing involved delivering the MSF shell called “Meterpreter”. Meterpreter provides a commandline
shell similar to the Unix or Windows DOS shells. The penetration tester can enter commands through the shell
to perform desired actions on the remote target. Detailed information on the functionality of MSF can be found
in [1, 6, 7].

2.2.3 CORE Impact and Nessus

Another penetration testing tool, CORE Impact [8], was also used during the course of our testing. CORE
Impact is a commercial penetration testing tool available from CORE Security. The objective of using this tool
in our testing was to validate the results of our experiments. The attacker in our model would not have access
to this tool due to its price point.

Nessus is a vulnerability scanning tool that enables users to find vulnerabilities within a target system. Both
MSF and CORE Impact can perform vulnerability scans before launching attacks. We used the commercial
version of Nessus (Version 5.0.3) to scan the target hosts for vulnerabilities in order to validate the vulnera-
bilities used in this work. These results were compared with the findings of the database searches and attack
tools.
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3.0 DESCRIPTION OF TEST SETUP AND RESULTS

The testing process is described in this section. Selection of the vulnerabilities that were exploited on specific
Windows platforms is discussed and detailed results for each OS are given.

3.1 Test setup

To measure the success rate of exploiting a vulnerability, each OS was repeatedly attacked in two ways: with
and without rebooting between attacks. The first experiment was to repeatedly attack specific OSs 100 times.
Each attack (successful or not) was allowed to finish before the next attack was commenced. We chose this
attack approach to simulate a real-world scenario where various attackers could be attempting to gain access
to a system without the users’ knowledge and intervention. If any of the attempted exploits broke a service
or functionality on the target, the repetition helps to determine if the success of subsequent attacks could be
affected. The second experiment also repeated the attack against the specific OS 100 times. However, in this
scenario, each target was rebooted between attacks. The reboot helped ensure that the host OS was in a “stable”
state and that any difficulties in getting the exploit working correctly would be attributable to the exploit code.

The use of both the Reverse TCP and the Bind TCP eliminates the possibilities of recording exploitation
failures resulting from failed MSF payload code. However, throughout our tests, we concluded that no payload
delivery mechanism resulted in better success rates than the other. Since the two produced nearly identical
results, we recorded the better success rates in cases where they were not identical. This is still consistent with
our attacker model.

Meterpreter’s shell has many commands available to the attacker. One of these commands, screenshot,
was used to capture an image file. This file was then saved on the attacker’s computer as proof of a successful
attack.

3.2 Selected operating systems

For our tests, we chose a representative sample of OSs that are in use across organizations. Since Microsoft
(MS) Windows OSs dominate the market share with over 90% of the desktop operating systems installed [9],
we chose them for our experiments. We used unpatched OSs as provided through the Microsoft Developer
Network (MSDN). The selected OSs and the reasons for selecting them are listed in Table 1.

Table 1: Summary of OSs selected.

Operating system Reasons for selection
Windows XP (No service pack (SP)) Most popular OS constituting over 43% of deployed OSs in 2012 [9].
Windows XP with SP3 Most recent version of Windows XP available from MSDN.
Windows Vista with SP2 Successor to Windows XP and contains the most recent Vista SP.
Windows 7 with SP1 Had over 40% of the market share in 2012 [9].
Windows Server 2003 with SP 2 Representative deployed server software. SP2 contains the most re-

cent roll-up of patches that MS has deployed.
Windows Server 2008 R2 with SP1 The most recent server software provided by MS.

There are recent Microsoft OSs omitted from our testing. At the time of OS selection (November 2012), the
Windows 8 OS was not yet released. Windows Server 2012, while available, had just been released. Windows
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Server 2000 is no longer supported by MS. Testing the reliability of exploits against an obsolete OS would not
be representative of exploit reliability against more current OSs.

3.3 The test network

Our test network is shown in Figure 2. All devices were placed onto a flat network. To simplify scripting
requirements during testing, each workstation was assigned the same IP address. During testing, only one
target machine was running at any given time. The target OSs listed in Table 1 were loaded on each host as
illustrated in Figure 2. MSF and automation scripts are hosted on the first penetration testing system. CORE
Impact and the Nessus vulnerability scanning tool are hosted on the other two attacker systems. During testing,
only one attacker system is used at a time.

Figure 2: The network architecture used in this work.

Multiple versions of MSF were configured on the attacker VM, as exploitation failures occurred with one
version of the software but not with older versions. Although the primary testing was performed with MSF
version 4.2, versions 3.4, 3.6, 4.0, 4.1.4, and 4.5 were also used for test validation in this part of the experiment.

3.4 Vulnerability and exploit profiles

A list of vulnerabilities was created from the National Vulnerability Database (NVD) [10], the Open Source
Vulnerability Database (OSVDB) [11], and the MS Security TechCenter Security Bulletins [12]. From these
sources, we selected server side exploits rather than client-side exploits to suit our attacker model. Client-side
exploits require user interaction such as a mouse click [13, 14]. Examples of client-side exploits are email-born
viruses, which require users to click a link or open an attachment for the attack to succeed. Server-side exploits
do not require user input to succeed. Examples of server-side attacks are the system compromise resulting from
the remote execution of arbitrary code in worms such as Blaster and Nachi [15].

Of the 53378 general vulnerabilities found within the NVD as of 21 November 2012, 727 had at least one
MSF exploit associated with them. Of these vulnerabilities, 135 affect MS software and their dependencies.
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Since our tests only focus on server-side vulnerabilities, this was further reduced to 9 unique server-side vul-
nerabilities affecting the MS OSs listed in Table 1. In addition to these vulnerabilities, one vulnerability was
identified that was only listed in the OSVDB. Our low vulnerabilities figures only represent the server-side
vulnerabilities for MS OSs for which there were MSF exploits. As shown in this report, some vulnerabilities
are present in multiple OSs.

3.5 Test results

The exploitation process was run against targeted OSs using the procedure described in Section 2.0. We then
recorded the success and failure rates. In addition to our test results, we recorded the CVSS [16] exploitability
subscores1 as recorded in the NVD for each vulnerability [10].

CVSS computes the exploitability subscore from the metrics in one of its three metric groups, the Base
metric group. This group, which represents the “intrinsic and fundamental characteristics of a vulnerabil-
ity” [16], has six metrics whose scores are provided by the software vendor. CVSS, which provides the scoring
guidelines, uses three of the Base metrics (Access Vector, Access Complexity, and Authentication) to calculate
an exploitability subscore that is recorded for every published vulnerability on the NVD. The exploitability
subscore is calculated as shown in Equation 1.

Exploitability = 20×AccessVector×AccessComplexity ×Authentication (1)

The subscore represents a measure of how readily exploitable (require low effort) a vulnerability is, ranging
from a low value of 1 to a high value of 10 (least effort). Detailed information on the scoring guidelines and the
exploitability subscore can be found in [16, Section 3].

We summarise our test results for each targeted OS in this section.

3.5.1 MS Windows Server 2008 Revision 2 Service Pack 1

Two vulnerabilities were identified for MS Windows Server 2008 R2 SP1. Vulnerability CVE-2010-2729,
exploitable by the MSF exploit /smb/ms10_061_spoolss, allows remote code execution by sending
crafted print requests over remote procedure calls (RPCs) [10]. The other vulnerability OSVDB-397, which
is exploitable by the MSF exploit /iis/iis_webdav_upload_asp, allows remote attackers to upload
arbitrary files to a web server, which can result in information modification such as the defacing of web sites.

We failed to exploit either vulnerability using the corresponding MSF exploits. In both cases, no Meter-
preter session could be established. This failure suggests that users in our attacker model would fail when using
such exploits to launch attacks on this OS. However, the CVSS exploitability subscores tell a different story.
Although, as stated earlier, there is no CVSS exploitability subscore for vulnerability OSVDB-397, CVSS as-
signs a value of 8.6 on vulnerability CVE-2010-2729. This high CVSS score points to a easily exploitable
vulnerability. However, our experimental results, using a publicly available MSF exploit do not support that.

The failure of MSF exploit /smb/ms10_061_spoolss is attributed to the failure to execute the printer
exploit code on the target. The execution of the exploit is in two stages. The first stage, which involves the
creation of files in a system directory, was successful and the files appeared in the printer queue. The second
stage of the exploitation involves the execution of the exploit when the printer queue processes the exploit
files in the print queue. However, attempts to execute the exploit failed, and no MSF Meterpreter session was
established.

1Some OSVDB vulnerabilities, such as OSVDB-397, do not have assigned CVSS scores.
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Exploit /iis/iis_webdav_upload_asp failed because the Internet Information Services (IIS) 7 web
server included with Windows Server 2008 would not accept hypertext transfer protocol (HTTP) PUT requests
required for exploitation. Unlike Windows Server 2003 and IIS 6, IIS 7 no longer supports the ability to
perform anonymous PUT requests by default. Although effort was made to configure IIS 7 to accept HTTP
PUT verbs at the IIS server and site group levels, the changes required significant configuration modifications
to the IIS server, custom modules and configurations to be created, which was a significant deviation from a
“standard” web server configuration. Thus, although vulnerability literature indicates that this OS is vulnerable
to this exploit, our research indicates the vulnerability has dependencies on optional subcomponents of the OS,
resulting in the failed exploit.

3.5.2 MS Windows 7 SP1

No server side vulnerabilities with MSF exploits for MS Windows 7 SP1 were identified. This result suggests
that the OS with the second widest market share [9] has no server side vulnerabilities that can be exploited
through commonly available tools such as MSF. Considering its widespread use, one would expect the OS to
have many vulnerabilities. However, since this OS has a 2011 SP, it would have been recently patched (as of
November 2012). Thus, the OS would have no published vulnerabilities that have MSF exploits.

3.5.3 MS Windows Server 2003 SP2

We identified 3 applicable server-side vulnerabilities for MS Windows Server 2003 SP2. The first two vulnera-
bilities, CVE-2010-2729 and OSVDB-397 are the same as those identified earlier for MS Windows Server
2008 Revision 2 (R2) SP1. The third vulnerability CVE-2008-4250 allows attackers to remotely execute
code on the system using crafted RPC requests, thus allowing the system to be compromised. The Conficker
worm, for example, used this vulnerability to propagate.

Table 2 summarizes the results of the tests. We succeeded in exploiting two of the vulnerabilities and failed
to exploit the third. Vulnerability CVE-2008-4250 was exploited 100% of the time with reboots, but only
30% of the time in the “No Reboot” executions. Vulnerability OSVDB-397 was exploited with nearly 100%
consistency. We had only one “No Reboot” failure for this vulnerability. Vulnerability CVE-2010-2729
completely failed to execute.

Table 2: A summary of the exploitation results using MSF on Windows 2003 SP2.

Success Rate
Vulnerability Exploit Exploitability

subscore No Reboot Reboot
10 30% 100%
8.6 0% 0%

CVE-2008-4250
CVE-2010-2729
OSVDB-397

/smb/ms08 067 netapi
/smb/ms10 061 spoolss
/iis/iis webdav upload asp 99% 100%

The CVSS subscores for vulnerability CVE-2008-4250 points to an easily exploitable vulnerability. This
is supported by our experimental results for the Reboot case. However, the “No reboot” results paint a different
picture. The 30% success rate in the “No Reboot” case suggests that the CVSS subscore of 10 tells only one side
of the story. The explanation for the failure of vulnerability CVE-2010-2729 is the same as that presented
for the Windows Server 2008 R2 SP1 case. The /smb/ms10_061_spoolss exploit failed and, as in the
Windows Server 2008 R2 SP1 case, the exploit appears in the shared printer queue but the exploit execution is
terminated with a timeout exception.
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3.5.4 MS Windows Vista SP2

For this OS, there was one vulnerability with a corresponding MSF exploit. This vulnerability CVE-2010-2729
was explained for Windows Server 2008 R2 SP1. We, however, could not exploit this vulnerability. Identical
to the previous two OSs, the exploit appeared in the shared printer queue. In this case, the exploit execution
timed-out for reasons we are unable to establish. Its appearance in the printer queue may indicate problems
with the MSF exploit code on these OSs.

3.5.5 MS Windows XP SP3

Two server-side vulnerabilities for MS Windows XP SP3 have corresponding MSF exploits. These vulnerabil-
ities, CVE-2008-4250 and CVE-2010-2729, are the same as described in the earlier OSs. We were able
to attack the MS Windows XP SP3 OS with success rates shown in Table 3. Without reboots, vulnerability
CVE-2008-4250 was exploitable 85% of the time, while vulnerability CVE-2010-2729 was exploitable
99% of the time. With reboots, both vulnerabilities were exploitable 100% of the time.

Table 3: A summary of the exploitation results using MSF on Windows XP SP3.

Success Rate
Vulnerability Exploit Exploitability

subscore No Reboot Reboot
10 85% 100%CVE-2008-4250

CVE-2010-2729
/smb/ms08 067 netapi
/smb/ms10 061 spoolss 8.6 99% 100%

Note that the /smb/ms10_061_spoolss exploit succeeded on this system in contrast to the Windows
Server 2008 R2 SP1, Windows Server 2003 SP2, and Windows Vista SP2 OSs where it failed. This reinforces
the point that exploits are dependant on the host operating system configuration and patch levels, and illustrates
the point that new vulnerabilities can be introduced while correcting older ones.

Both CVSS exploitability subscores are high, indicating vulnerabilities that are readily exploitable. This is
supported by our results that show exploitability rates of 85% and higher for both cases. However, our experi-
mental results of 85% success rates in the “No Reboot” case disagrees with the CVSS exploitability subscore
that implies that the vulnerability CVE-2008-4250 is exploitable all the time. The CVSS exploitability sub-
score for vulnerability CVE-2010-2729, points to a vulnerability that is readily exploitable most of the time.
However, our experimental results show that this vulnerability is almost always exploitable on this OS.

3.5.6 MS Windows XP SP0

We identified eight relevant server-side vulnerabilities that could be exploited in MS Windows XP SP02. MSF
identified nine exploits that could exploit those vulnerabilities. Three of those exploits turned out to be inap-
plicable to exploit this OS. Vulnerability CVE-2003-0352 can allow attackers to remotely execute arbitrary
code through malformed messages as evidenced in the Blaster and Nachi worm attacks. The vulnerability
CVE-2003-0533, which is exploited by the Sasser worm, allows remote code execution that leads to unautho-
rised information disclosure and/or disruption of services. Another vulnerability that could lead to unauthorised
information disclosure and/or disruption of services is CVE-2003-0812. Vulnerability CVE-2003-0818
allows for remote code execution. These vulnerabilities and their corresponding exploits are listed in Table 4.

2SP0 means the original OS without any service packs.
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Table 4: A summary of the exploitation results using MSF on Windows XP SP0.

Success Rate
Vulnerability Exploit Exploitability

subscore No Reboot Reboot
10 34% 100%
10 34% 100%
10 0% 0%
10 13% 100%
10 0% 0%

CVE-2003-0352
CVE-2003-0533
CVE-2003-0812
CVE-2003-0818
CVE-2006-4691
CVE-2008-4250

/dcerpc/ms03 026 dcom
/smb/ms04 011 lsass
/smb/ms03 049 netapi
/smb/ms04 007 killbill
/smb/ms06 070 wkssvc
/smb/ms08 067 netapi 10 100% 100%

Test results in Table 4 show that we were successful in exploiting 4 of the 6 applicable vulnerabilities. In
each one of the 4 successful cases, a 100% success rate was achieved for each “Reboot” exploit. Interestingly,
only 34% of the “No Reboot” attacks with the /smb/ms04_011_lsass and /dcerpc/ms03_026_dcom
exploits were successful. An even lower 13% success rate for exploit /smb/ms04_007_killbill with the
“No Reboot” automation was recorded. To attempt to improve the success rate, all tests were repeated with
longer wait times between attacks. Regardless of the length of the wait times, the results remained the same
except for /smb/ms04_011_lsass, whose success rate increased from 34% to 100%. This change indicates
that the Local Security Authority Subsystem Service (LSASS), which is the service being exploited in this case,
takes some time to clean up the system after an attack.

From Table 4, two exploits failed, despite indication from NVD and MSF that they apply to the target
OS. MSF indicates that exploit /smb/ms06_070_wkssvc completes execution, but there is no indication
of success or failure since we could not get access to the Meterpreter shell. For exploit /smb/ms03_049_
netapi, the peer always reset the connection before we had access to the Meterpreter Shell. Other than
identifying the failures, we do not have conclusive reasons for them.

The CVSS exploitability subscores are 10 for all the vulnerabilities for this OS. Except for the two com-
plete failures in CVE-2006-4691 and CVE-2003-0812, our experimental “Reboot” results support the
CVSS subscore values. In addition, all our experimental results support the CVSS subscores for vulnerability
CVE-2008-4250. The low success rates in the “No Reboot” cases for the rest of the vulnerabilities contra-
dicts the CVSS subscore that point to readily and easily exploitable vulnerabilities. Further contradictions are
reflected in the two total failures whose CVSS exploitability subscores are still 10.

3.5.7 Comparison of our success rates with CVSS base scores

The CVSS base metrics give an indication of the level of effort required to exploit given vulnerabilities. For
example, a vulnerability with an Access Complexity metric of 0.61 is expected to require more effort to exploit
than one with 0.71. Similarly, the exploitability subscore, which is calculated from the three base metrics, also
gives a measure of the effort required to exploit a vulnerability. These scores and metrics, as well as our success
rates are listed in Table 5.

From Table 5, the CVSS base scores are constant for a given vulnerability regardless of the OS. Consider
vulnerability CVE-2008-4250 for example. The CVSS metrics and scores do not change from one OS to
another. These measures suggest the same level of effort is required to exploit this vulnerability over all the
vulnerable OSs listed. However, our results show that this is not always the case. Our success rates for this
vulnerability vary from 30% to 100%.
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Table 5: A side-by-side comparison of CVSS scores and our success rates.

Success Rate
Vulnerability Access

Vector
Access

Complexity
Authentication Exploitability

Subscore
Base
Score

No
Reboot Reboot

MS Windows Server 2008 R2 SP1
1.0 0.61 0.704 8.6 9.3 0% 0%CVE-2010-2729

OSVDB-397 0% 0%
MS Windows Server 2003 SP2

1.0 0.71 0.704 10.0 10.0 30% 100%
1.0 0.61 0.704 8.6 9.3 0% 0%

CVE-2008-4250
CVE-2010-2729
OSVDB-397 99% 100%

MS Windows Vista SP2
CVE-2010-2729 1.0 0.61 0.704 8.6 9.3 0% 0%

MS Windows XP SP3
1.0 0.71 0.704 10.0 10.0 85% 100%CVE-2008-4250

CVE-2010-2729 1.0 0.61 0.704 8.6 9.3 99% 100%
MS Windows XP SP0

1.0 0.71 0.704 10.0 7.5 34% 100%
1.0 0.71 0.704 10.0 7.5 34% 100%
1.0 0.71 0.704 10.0 7.5 0% 0%
1.0 0.71 0.704 10.0 7.5 13% 100%
1.0 0.71 0.704 10.0 10.0 0% 0%

CVE-2003-0352
CVE-2003-0533
CVE-2003-0812
CVE-2003-0818
CVE-2006-4691
CVE-2008-4250 1.0 0.71 0.704 10.0 10.0 100% 100%

Another observation from Table 5 is that all the vulnerabilities recorded have very high base scores. The
scores translate to exploitability subscores of 8.6 and 10. These subscores suggest that all the vulnerabilities
require little effort to exploit. However, our experimental results show that the success rates vary from 0%
to 100%. Those results indicate that the vulnerabilities listed in Table 5 may not always be as exploitable as
suggested by the high CVSS base scores.

These score variations are shown in the scatter graph3 in Figure 3. In the graph, CVSS only has two Access
Complexity metrics of 0.61 and 0.71. These values imply that we only have two levels of effort required to
exploit the vulnerabilities in Table 5. This observation is partially supported by our “Reboot” success rates
which are either 0% or 100%. However, there is only a moderate correlation between our success rate and
Access Complexity (r = 0.47)4. On the other hand, our “No Reboot” success rates show a wide variation with
Access Complexity, and its not surprising that there is no significant correlation between the two (r = 0.14).

3.5.8 Validation tests with Nessus scan and CORE Impact

Faced with the seemingly low vulnerability and exploit counts while considering the ever-increasing number of
breaches identified [17, 18], we validated our results in two stages. First, the Nessus Vulnerability Scanner [19]
was used to validate that the list of exploitable vulnerabilities we found was exhaustive. Then CORE Impact [8]

3The graph has a 0.015 jitter.
4r is the correlation coefficient.
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Figure 3: Scatter plot to illustrate the variations in success rates and access complexity.

was used to exploit targeted systems using its default all-inclusive attacks; this verified that the successes and
failures recorded earlier in this work are based on an exhaustive list of vulnerabilities for the identified OSs.

Nessus was used to scan each of the OSs under consideration and it identified their vulnerabilities. We
compared its list with the vulnerabilities obtained using the NVD and OSVDB databases. Nessus identified
the same server-side vulnerabilities as obtained before. This confirmed that our initial vulnerability search was
exhaustive.

Each of the OSs under testing were configured as a target system within CORE Impact. Attacks were then
launched against each of the targets, allowing CORE to attempt to breach the target system. When the attacks
for each OS were executed, CORE Impact exploited the same vulnerabilities that we had identified earlier. No
new exploits or vulnerabilities were identified that our database searches and MSF testing had not identified
previously.

4.0 RELATED WORK

There are a number of approaches to determining some measure of the likelihood of being attacked. We
identified four different categories of these efforts and compared them to ours. First, we identified some ap-
proaches [16, 20, 21] that focus on quantifying known and unknown vulnerabilities and their attributes as an
indicator of how likely a system can be attacked. As our work (which depends on known and published vul-
nerabilities) shows, without testing the vulnerabilities on given targets, it cannot be known for certain that a
vulnerability can be exploitable. So, these measures may be more misleading compared to the success rates
that we determined through our work.
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Second, some prior approaches use attack graph approaches that, given a set of vulnerabilities, determine
the possible paths that attackers could follow until they reach their final goal [22–24]. These approaches use
different approaches to choose, for a given vulnerability, which of the possible paths would be best or easiest to
follow. We experiment on single step attacks and make the valid assumption that once a system is compromised,
an attacker can attack the next system from there through horizontal or vertical privilege escalation. Using our
results at each attack step could help determine the best path to follow. Our results could therefore be useful to
these approaches and could provide a complimentary likelihood metric to assist in deciding the best direction
to follow in an attack graph.

The third category of approaches deals with determining exploit metrics [25–27]. These approaches classify
and characterise different forms of exploits. The approaches characterise the exploit binaries [25] or the exploit
behaviour through traffic patterns [26]. In our work, we do not look at the detailed construction of exploits
or the traffic patterns associated with their behaviour, but identify the existence of exploits and determine how
likely they could be exploited on an identified target. There is no guarantee that the exploit metrics determined
solely from binary characteristics and identified traffic patterns can be entirely meaningful, when we show in
this work that not all exploits work as expected all the time.

The fourth and final category is the course of action (COA) metrics and measures. COA metrics provide
supporting economic, security, or efficiency justification [28] in taking action to remedy a computer security
problem. While all the numerical security measures determined through methods described above can be used
for COAs support, some researchers [24, 29, 30] have put more emphasis on the COA as the main objectives
of their work. Although they recommend a COA based on the approach’s objective, it is generally left to the
user to implement the best COA based on the metrics provided. These approaches could also benefit from the
practical experimental success rates results obtained in this work.

CVSS [16], from the first category, is an open framework for sharing computer network security vulnera-
bilities and their potential impacts on enterprise networks. It is divided into three major metric groups, namely
Base, Temporal and Environmental. In the Base group of metrics is the calculated exploitability score that re-
flects on the likelihood of a vulnerability being exploited. It is based on the CVSS scores of access complexity,
access vector, and authentication. However, this value, which provides a security metric for a single exploitation
of a vulnerability, may not always be available or accurate [31]. In our work we used an experimental approach
that determines this metric, which could be useful when the CVSS value is not available to supplement it or
provide a more accurate measure if an estimate had been previously used.

5.0 DISCUSSION AND CONCLUSIONS

Under the attacker model of an attacker that uses MSF, with only its library of exploits, and attacks server-
side vulnerabilities, we observe that the Windows OSs only had eight matching exploits in the MSF library.
Of those, six of them were exploitable on at least one of the OSs tested. Breaking it down further, two OSs
had two exploitable vulnerabilities (in our attacker model), two had no exploitable vulnerabilities, and one had
four exploitable vulnerabilities. This information shows that an organization must truly understand the type of
attackers against whom they are defending. If they wanted to only defend against the basic attackers in our
attacker model, there would be only six MS OS vulnerabilities to consider. Moreover, depending upon the
particular OSs used by the organization, there could even be no vulnerabilities that are exploitable by that class
of attacker.

Our data demonstrates that the first launch of an attack often has a much higher success rate than later
attacks do. When systems were rebooted after each attack, all eight exploitable vulnerabilities were exploited
100% of the time. However, when the system was not rebooted, the subsequent attacks could have vulnerability
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success rates as low as 13%. In other words, after the first attack, the system is often in a state where subsequent
attacks on the same vulnerable system may fail.

The CVSS exploitability subscore gives an indication of how exploitable a vulnerability is, but our experi-
ments show that the subscore is too coarse to be used as a metric for prioritizing mitigations on specific systems.
A single exploitability subscore is given for all OSs. Our data shows that one OS could be reliably exploited
100% of the time by our attacker model while another OS (indicated by CVSS to be vulnerable and exploitable)
could not be exploited at all by our attacker model.

Our work shows that vulnerabilities differ greatly in their exploitability. Metrics on the exploitability suc-
cess likelihood for exploits in widely and freely available tools are required so that decision makers can effi-
ciently manage their cyber security resources. If resources were unlimited, and if mitigating security measures
caused no adverse side-effects, then an organization could mitigate every vulnerability that is disclosed. How-
ever, the reality is that human and financial resources to secure networks are often scarce, and mitigations can
have significant usability and functionality side-effects. Our recommendation is for organizations to consider
the types of attackers against whom they need to defend, and include the vulnerability-exploitability attributes
as an input to their mitigation prioritization process. It is unrealistic for many organizations to have the ability
to produce the necessary data themselves, so we recommend an information sharing approach, either through
commercial or community ventures.

ACRONYMS AND ABBREVIATIONS

CVSS Common Vulnerability Scoring System

COA course of action

HTTP hypertext transfer protocol

IIS Internet Information Services

LSASS Local Security Authority Subsystem Service

MSF Metasploit Framework

MS Microsoft

MSDN Microsoft Developer Network

OS Operating System

OSVDB Open Source Vulnerability Database

Revision 2R2

RPC

SP

VM

NVD

remote procedure call

service pack

virtual machine

National Vulnerability Database
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